Unsupervised Clustering of Commercial Domains for Adaptive Machine Translation
نویسندگان
چکیده
In this paper, we report on domain clustering in the ambit of an adaptive MT architecture. A standard bottom-up hierarchical clustering algorithm has been instantiated with five different distances, which have been compared, on an MT benchmark built on 40 commercial domains, in terms of dendrograms, intrinsic and extrinsic evaluations. The main outcome is that the most expensive distance is also the only one able to allow the MT engine to guarantee good performance even with few, but highly populated clusters of do-
منابع مشابه
Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملA Multi-Domain Translation Model Framework for Statistical Machine Translation
While domain adaptation techniques for SMT have proven to be effective at improving translation quality, their practicality for a multi-domain environment is often limited because of the computational and human costs of developing and maintaining multiple systems adapted to different domains. We present an architecture that delays the computation of translation model features until decoding, al...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملUnsupervised Identification of Translationese
Translated texts are distinctively different from original ones, to the extent that supervised text classification methods can distinguish between them with high accuracy. These differences were proven useful for statistical machine translation. However, it has been suggested that the accuracy of translation detection deteriorates when the classifier is evaluated outside the domain it was train...
متن کاملExtracting and Selecting Relevant Corpora for Domain Adaptation in MT
The paper presents scheme for doing Domain Adaptation for multiple domains simultaneously. The proposed method segments a large corpus into various parts using self-organizing maps (SOMs). After a SOM is drawn over the documents, an agglomerative clustering algorithm determines how many clusters the text collection comprised. This means that the clustering process is unsupervised, although choi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.04683 شماره
صفحات -
تاریخ انتشار 2016